Principles of management of suspected septic shock

Authors: Dr Audrey Hébert, Dr Ashraf Kharrat, Dr Soume Bhattacharya, Dr Faith Zhu, Dr Kumar Kumaran, Dr Deepak Louis

Note: This document applies to acute late-onset hemodynamic instability presumed to be due to sepsis.

The document has been subdivided into broad monitoring and management topics and each topic is subdivided into 3 sections, domain, recommendation, and strength of recommendation following the EPIQ bundle format.

Domain	Recommendation	Strength of recommendation &
		certainty of evidence
What clinical variables should be monitored?	Recommended:Non-invasive:Blood pressure (systolic, mean, diastolic)Heart rateCapillary refill timeUrine outputContinuous pre and post ductal oxygensaturation monitoringInvasive:Arterial line should be used for BPmonitoring (when possible)	Strong recommendation [based on group consensus; low to very low certainty of evidence]
	CVP monitoring may be helpful [Low values (<5 cm H ₂ O) suggest hypovolemia; trending may be helpful]	Weak recommendation [based on group consensus; low to very low certainty of evidence]
What BP thresholds should be used to define hypotension?	Target Blood Pressure systolic / diastolic and mean BP above the 3 rd centile for gestational age (Zubrows)- or mean BP > CGA as per standard local protocol. May use patient specific BP threshold where tissue oxygen delivery is deemed compromised based on clinical judgement	Weak recommendation [low certainty of evidence]
What should be the frequency of non-	BP should be measured q 15 min until patient is hemodynamically stable following which q 1 hour pre-ductal BP	Weak recommendation [based on group

A. MONITORING OF CLINICAL VARIABLES

invasive BP monitoring?	should be preferred in non-invasive BP measurement	consensus; very low certainty of evidence]
How should urine output be monitored?	Routine UOP monitoring q 4-8 h based on local practice. A urine output of <0.5 ml/kg/hr or greater than 50% drop from baseline urine output with optimized intravenous fluids may suggest hemodynamic compromise – may consider more frequent monitoring. Monitoring using in dwelling urinary catheter may be used in anuria or suspected retention [eg. from opioids or muscle relaxant]	Weak recommendation [based on group consensus; very low certainty of evidence]
Should NIRS be routinely used?	Clinicians may use NIRS as an adjunct in centres where NIRS monitoring is available and local practice guidelines have been developed. Insufficient evidence to suggest thresholds for intervention	Weak recommendation [low certainty of evidence]

B. FLUIDS

What type of fluid?	Normal Saline (NS)	Strong recommendation [based on group consensus; low certainty of evidence]
Volume of each bolus	10-20ml/kg over 15-20 min (Consider underlying pathophysiology [such as underlying cardiac dysfunction/significant pulmonary edema] while considering the volume of bolus)	Weak recommendation [based on group consensus; low certainty of evidence]
Maximum volume of initial resuscitation	In patients with suspected hypovolemia consider giving 1- 2 NS boluses (maximum 30-40 ml/kg)	Weak recommendation [based on group consensus; low to very low certainty of evidence]

C. VASOPRESSOR/INOTROPE

When to consider: Fluid unresponsive/CI

In neonates with acute late-onset hemodynamic instability, early use of	Strong
echocardiography (TNE where available) is recommended to confirm	recommendation
diagnosis, establish severity and guide hemodynamic management.	[based on group consensus; low to
In the absence of echocardiography (or when not feasible), the first	very low certainty
choice of cardiotropic agent should be informed by clinical suspicion of	of evidence]
vasodilatory shock or vasoconstrictive shock.	
• Vasodilatory shock: Increased heart rate, low peripheral	
vascular resistance, vasodilatation (warm, bounding & wide	
pulses, normal to flash cap refill), low BP with widened pulse	
pressure	
• Vasoconstrictive shock: Increased heart rate, vasoconstriction	
(poor pulses, cold extremities, mottled skin, prolonged cap	
refill, low BP with narrowing pulse pressure	
Careful assessment for treatment response is warranted.	

How to decide if you need vasopressor vs. inotrope?	Vasodilatory shock → vasopressor Vasoconstrictive shock → inotrope	Weak recommendation [based on group consensus; low to very low certainty of evidence]	
NB: If vasopressor or inotrope will be started through a central line, line should be flushed as appropriate – ensure timely delivery to the patient by overcoming the dead space Vasopressors			

vasopressors		
What is the first line vasopressor?	Norepinephrine or Dopamine are suggested as first line agents	Weak recommendation [based on group consensus; low to very low certainty of evidence]

What is the dose of first line vasopressor and the rate of titration?	[All dosages mentioned below are suggested starting dosages; for maximum dose and drug interactions consult local formulary] Norepinephrine: 0.05mcg/kg/min, increase by 0.05mcg/kg/min q30 minutes Max dose: 0.4mcg/kg/min Dopamine: 5mcg/kg/min, increase by 2.5mcg/kg/min q30 minutes Max dose: 15 mcg/kg/min	Weak recommendation [based on group consensus; low to very low certainty of evidence] Weak recommendation [based on group consensus; low to very low certainty of evidence] Weak recommendation
What is the second line vasopressor?	Dopamine/Norepinephrine Vasopressin	Weak recommendation [based on group consensus; low to very low certainty of evidence]
What is the dose of second line vasopressor and the rate of titration?	Dopamine/Norepinephrine as mentioned before Vasopressin: 0.0003 u/kg/min, increased by 0.0001-0.0003 u/kg/min q 30 min Max dose: 0.002 u/kg/min	Weak recommendation [based on group consensus; low to very low certainty of evidence]
Inotropes	•	
What is the first line inotrope?	If hypotension: Epinephrine Dobutamine If hypertension – milrinone	Weak recommendation [based on group consensus; low to very low certainty of evidence]

What is the dose of first line inotrope and the rate of titration?	Increa 0.1 mc Dobut 5mcg/ Milrin	ohrine: 0.01 to 0.1 mcg/ kg/min. se by 0.01-0.02 q 30-60 minutes, up to cg/ kg/min amine: 5mcg/kg/min, increase by kg/min q30 minutes one: starting dose 0.33mcg/kg min, e increased up to 0.66 mcg/kg/min, no g dose	Weak recommendation [based on group consensus; low to very low certainty of evidence]
What additional biochemical monitoring should be used?	Specific additional Biochemical parameters: Blood gas, serum lactate, glucose (epinephrine), Na (if vasopressin)		Strong recommendation [based on group consensus; low to very low certainty of evidence]
D. ADJUNCT THEI	DADIE (7	
Is there any indicatio the routine use of soc bicarbonate infusions	n for lium	Use of sodium bicarbonate in the context of PPHN is not routinely recommended However, to optimize the pH milieu	Strong recommendation [based on group consensus; low certainty of evidence] Weak recommendation
		for a minimal critical threshold to prevent inactivation of vasopressor/inotropes bicarbonate may be used in selected cases	[based on group consensus; very low certainty of evidence]
Is there any indication for the use of corticosteroids?		No available evidence to support use of steroids in the context of septic shock. For catecholamine resistant shock (i.e., reaching max dose cardiotropes as above with no/inadequate clinical response) its use may be considered.	Weak recommendation [based on group consensus; very low certainty of evidence]
		<i>Choice of corticosteroid:</i> Hydrocortisone 0.5-1.0 mg/kg – frequency as per local protocol (No evidence exploring benefit of loading dose in this population)	

Should a serum cortisol level guide therapy?	Serum cortisol level should not guide whether to use corticosteroids	Strong recommendation [based on group consensus; low certainty of evidence]
---	---	--

Suggested role of TNE guided care in neonates with suspected septic shock

At any point, a TNE can be requested by the clinical team as per local resources and protocol.			
Inadequate response to therapy and progressive escalation of therapy are situations where TNE			
should be strongly considered. [Strong recommendation; based on group consensus]			
TNE findings of hyperdynamic heart with	Vasopressor – norepinephrine first line		
normal cardiac output?			
[compensated vasodilatory shock]			
TNE findings of hyperdynamic heart with low	Reassess fluid status		
cardiac output?	Increase vasopressor		
[decompensating vasodilatory shock]			
TNE findings of elevated PVR with normal	Consider changing vasopressor to vasopressin		
cardiac output?	Inotropy with milrinone (in normotensive		
[sepsis with acute pulmonary hypertension]	patients) or epinephrine		
TNE findings of elevated PVR with low	Change vasopressor to vasopressin		
cardiac outputs?	Inotropy with epinephrine		
[sepsis with acute pulmonary hypertension			
and cardiogenic shock]			
TNE findings of cardiac dysfunction with	Epinephrine		
normal cardiac output?	Milrinone		
[compensated vasoconstrictive shock]			
TNE findings of cardiac dysfunction with low	Epinephrine		
cardiac output?			
[decompensating vasoconstrictive shock]			

References

Barton, P., Garcia, J., Kouatli, A., Kitchen, L., Zorka, A., Lindsay, C., ... & Giroir, B. (1996). Hemodynamic effects of iv milrinone lactate in pediatric patients with septic shock: A prospective, double-blinded, randomized, placebo-controlled, interventional study. *Chest*, *109*(5), 1302-1312.

Baske, K., Saini, S. S., Dutta, S., & Sundaram, V. (2018). Epinephrine versus dopamine in neonatal septic shock: a double-blind randomized controlled trial. *European journal of pediatrics*, *177*(9), 1335-1342.

Brierley, J., Carcillo, J. A., Choong, K., Cornell, T., DeCaen, A., Deymann, A., ... & Zuckerberg, A. (2009). Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. *Critical care medicine*, *37*(2), 666.

Ikegami, H., Funato, M., Tamai, H., Wada, H., Nabetani, M., & Nishihara, M. (2010). Low-dose vasopressin infusion therapy for refractory hypotension in ELBW infants. *Pediatrics International*, *52*(3), 368-373.

König, K., Casalaz, D. M., Burke, E. J., & Watkins, A. (2012). Accuracy of non-invasive blood pressure monitoring in very preterm infants. *Intensive care medicine*, *38*(4), 670-676.

Lechner, E., Hofer, A., Mair, R., Moosbauer, W., Sames-Dolzer, E., & Tulzer, G. (2007). Arginine-vasopressin in neonates with vasodilatory shock after cardiopulmonary bypass. *European journal of pediatrics*, *166*(12), 1221-1227.

Masarwa, R., Paret, G., Perlman, A., Reif, S., Raccah, B. H., & Matok, I. (2017). Role of vasopressin and terlipressin in refractory shock compared to conventional therapy in the neonatal and pediatric population: a systematic review, meta-analysis, and trial sequential analysis. *Critical Care*, *21*(1), 1-11.

Meyer, S., Gottschling, S., Baghai, A., Wurm, D., & Gortner, L. (2006). Arginine-vasopressin in catecholamine-refractory septic versus non-septic shock in extremely low birth weight infants with acute renal injury. *Critical Care*, *10*(3), 1-6.

Meyer, S., Sander, J., Gräber, S., Gottschling, S., & Gortner, L. (2010). Agreement of invasive versus non-invasive blood pressure in preterm neonates is not dependent on birth weight or gestational age. *Journal of paediatrics and child health*, *46*(5), 249-254.

Meyer, S. (2011). Vasopressin infusion therapy for refractory hypotension in extremely low birthweight neonates. *Pediatrics International*, *53*(2), 287-287.

Phillipos, E. Z., Barrington, K. J., & Robertson, M. A. (1996). Dopamine (D) versus epinephrine (E) for inotropic support in the neonate: a randomized double blinded controlled trial.† 1414. *Pediatric Research*, *39*(4), 238-238.

Ranjit, S., Aram, G., Kissoon, N., Ali, M. K., Natraj, R., Shresti, S., ... & Gandhi, D. (2014). Multimodal monitoring for hemodynamic categorization and management of pediatric septic shock: a pilot observational study. *Pediatric Critical Care Medicine*, *15*(1), e17-e26.

Rios, D. R., & Kaiser, J. R. (2015). Vasopressin versus dopamine for treatment of hypotension in extremely low birth weight infants: a randomized, blinded pilot study. *The Journal of pediatrics*, *166*(4), 850-855.

Troy, R., Doron, M., Laughon, M., Tolleson-Rinehart, S., & Price, W. (2009). Comparison of noninvasive and central arterial blood pressure measurements in ELBW infants. *Journal of Perinatology*, *29*(11), 744-749.

Wen, L., & Xu, L. (2020). The efficacy of dopamine versus epinephrine for pediatric or neonatal septic shock: a meta-analysis of randomized controlled studies. *Italian journal of pediatrics*, *46*(1), 1-7.

Valverde, E., Pellicer, A., Madero, R., Elorza, D., Quero, J., & Cabañas, F. (2006). Dopamine versus epinephrine for cardiovascular support in low birth weight infants: analysis of systemic effects and neonatal clinical outcomes. *Pediatrics*, *117*(6), e1213-e1222.

Ventura, A. M., Shieh, H. H., Bousso, A., Góes, P. F., Iracema de Cássia, F. O., de Souza, D. C., ... & Gilio, A. E. (2015). Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. *Critical care medicine*, *43*(11), 2292-2302.